Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430610

RESUMO

This work deals with a physical and chemical surface characterization of quaternary 18K, 14K, and 9K gold alloys and pure polycrystalline gold substrates. Surface microstructure and composition are evaluated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray fluorescence spectroscopy. Corrosion resistance of 18K gold alloys is explored by potentiodynamic polarization showing the influence of the manufacturing process on materials fabricated as plates and wires. The research is also in the framework of one of the most common strategies on the modification of metallic surface properties, i.e., the building of self-assembled monolayers (SAM) from organic thiols. The metal affinity of the head group to produce the coating of the substrate by covalent binding is approached by using thiol compounds with different molecular structures and functional group chemistries exposed to an electrolyte solution. Therefore, a comparative study on the surface protection of a quaternary 18K gold alloy and pure gold substrates by SAMs of 6-mercaptopurine (6MP), 1-decanethiol (DT), and 11-mercaptoundecanoic acid (MUA) has been carried out. Surface modification and SAM organization are followed by cyclic voltammetry (CV), and the behavior of the double layer of the electrode-electrolyte interface is evaluated by electrochemical impedance spectroscopy (EIS). The study of these materials allows us to extract fundamental knowledge for its potential application in improving the bioactive properties of different jewelry pieces based on 18K gold alloys.


Assuntos
Ligas de Ouro , Compostos de Sulfidrila , Compostos de Sulfidrila/química , Corrosão , Ouro/química , Propriedades de Superfície
2.
Nanoscale Adv ; 3(16): 4767-4779, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36134318

RESUMO

In this work, the methoxy terminated oligo- and polyethylene glycol of different chain lengths (EGn, n = 7, 18, 45 and 136) is grafted on AuNP surfaces under conditions where they attain maximum grafting densities. These EGn-AuNPs gain stability relative to the pristine c-AuNPs in aqueous solutions and in a wide temperature interval and they form stable suspensions in solutions of high NaCl concentrations. To show the thermoresponsive properties of these EGn-AuNPs, temperature titration experiments are carried out in the presence of increasing amounts of salts. The concentrations of NaCl are chosen by checking the stability of EGn-AuNPs at room temperature and choosing the highest concentrations that allow them to form stable suspensions. The analysis of the temperature titration experiments monitored by UV-visible spectroscopy and dynamic light scattering allows us to establish the existence of transitions from individual to assembled nanoparticles, the reversibility of the temperature transitions and hysteretic behaviour in these systems. While EG7-AuNPs only show reversible temperature transitions in the presence of 5 mM NaCl, EG18-AuNPs do up to 1 M NaCl, becoming only partially reversible in 2 M NaCl. The titrations of EG45-AuNPs in 3 and 5 M NaCl show irreversible temperature transitions. Finally, EG136-AuNPs present a complex and interesting behaviour with two temperature transitions, the first one showing hysteresis and the second being reversible.

3.
J Colloid Interface Sci ; 505: 1165-1171, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28715860

RESUMO

The identification of the factors that dictate the formation and physicochemical properties of protein-nanomaterial bioconjugates are important to understand their behavior in biological systems. The present work deals with the formation and characterization of bioconjugates made of the protein hemoglobin (Hb) and gold nanoparticles (AuNP) capped with three different molecular layers (citrate anions (c), 6-mercaptopurine (MP) and ω-mercaptoundecanoic acid (MUA)). The main focus is on the behavior of the bioconjugates in aqueous buffered solutions in a wide pH range. The stability of the bioconjugates have been studied by UV-visible spectroscopy by following the changes in the localized surface resonance plasmon band (LSRP), Dynamic light scattering (DLS) and zeta-potential pH titrations. It has been found that they are stable in neutral and alkaline solutions and, at pH lower than the protein isoelectric point, aggregation takes place. Although the surface chemical properties of the AuNPs confer different properties in respect to colloidal stability, once the bioconjugates are formed their properties are dictated by the Hb protein corona. The protein secondary structure, as analyzed by Attenuated total reflectance infrared (ATR-IR) spectroscopy, seems to be maintained under the conditions of colloidal stability but some small changes in protein conformation take place when the bioconjugates aggregate. These findings highlight the importance to keep the protein structure upon interaction with nanomaterials to drive the stability of the bioconjugates.


Assuntos
Ouro/química , Hemoglobinas/química , Hemoglobinas/metabolismo , Nanopartículas Metálicas/química , Humanos , Concentração de Íons de Hidrogênio , Conformação Proteica , Propriedades de Superfície
4.
J Phys Chem B ; 109(4): 1491-8, 2005 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-16851120

RESUMO

This is a report on the kinetics of the destruction and formation processes of the 6-thioguanine self-assembled monolayer (6TG SAM) on a mercury electrode from acid solutions by chronoamperometry. The destruction of the 6TG SAM that has been previously formed under open circuit potential conditions is carried out by stepping the potential from an initial value where the chemisorbed layer is stable up to potentials where the molecules are no longer chemisorbed. The destruction of the SAM has been described by a model that involves three types of contributions: (i) a Langmuir-type adsorption process, (ii) a 2D nucleation mechanism followed by a growth controlled by surface diffusion, and (iii) a 2D nucleation mechanism followed by a growth at a constant rate. The nonlinear fit of the experimental transients by using this procedure allows the quantitative determination of the individual contributions to the overall process. The kinetics of the formation process is studied under electrochemical conditions. The chronoamperometric experiment allows us to monitor the early stages of 6TG SAM formation. The implications of the physisorbed state at low potentials in the type of monolayer formation and destruction processes as well as the influence of temperature are also discussed.


Assuntos
Membranas Artificiais , Tioguanina/química , Eletroquímica , Eletrodos , Cinética , Mercúrio , Soluções/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...